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ABSTRACT: A method to compute the “exact” or consistent sensitivities to material and loading parameters
of the numerical nonlinear finite element response was developed by other researchers and the second author.
This general method is referred to in the literature as the Direct Differentiation Method (DDM). This paper
focuses on the behavior of stand-alone sensitivity results. It presents the results of convergence studies of the
DDM performed in the context of materially-nonlinear-only finite element models of frame structures and for
two types of analysis commonly used in earthquake engineering, namely nonlinear static push-over analysis
and nonlinear response history analysis. Convergence of nonlinear finite element response sensitivities
obtained using forward finite difference analysis towards those obtained using the DDM is examined. Conver-
gence of response sensitivities with progressive refinement of both the spatial and temporal discretizations is
also investigated based on some application examples. Convergence of response sensitivities is compared with
convergence of the corresponding response parameters. Both global (e.g., floor displacement) and local (i.e.,
plastic curvature, accumulated plastic curvature) response parameters are considered.

1 INTRODUCTION

In the last decade, finite element reliability methods
(FERM’s) have emerged as a powerful tool to per-
form probabilistic performance assessment of large
and complex structural systems (Liu and Der
Kiureghian 1991, Li and Der Kiureghian 1995,
Conte et al. 1995, 1998, 2000). They allow the use of
the same state-of-the-art computational nonlinear
structural models as those used in deterministic
response analysis of these systems. Accurate and
efficient computation of the gradient or sensitivities
to material and loading parameters of structural
response parameters used in formulating the various
limit-state functions are important requirements and
ingredients of FERM’s. Finite element response sen-
sitivity analysis also plays an important role in struc-
tural optimization and system identification based on
(linear or nonlinear) finite element model updating. 

An algorithm for computing the “exact” or consis-
tent sensitivities of the computationally simulated
structural response to constitutive material parame-
ters and discrete loading parameters consists of dif-
ferentiating exactly (consistently) the finite element
numerical scheme (including the material constitu-
tive law integration scheme) with respect to the sen-

sitivity parameters. This algorithm and its
implementation in a general-purpose nonlinear finite
element analysis program have been described in the
literature (Zhang and Der Kiureghian 1993, Conte et
al. 2001, 2002). This method is referred to here as the
Direct Differentiation Method (DDM). 

This paper focuses entirely on the behavior of
stand-alone sensitivity analysis. It appears that this
type of study is not found in many other places in the
literature. More specifically, this paper presents the
results of the following convergence studies per-
formed on the DDM as applied to an inelastic frame
structure: (1) convergence of response sensitivities
obtained using forward finite difference analysis
towards those obtained using the DDM; (2) conver-
gence of DDM results with respect to the spatial dis-
cretization (i.e., finite element mesh size); and (3)
convergence of DDM results with respect to the tem-
poral discretization (i.e., time step size). This paper
also compares (1) the convergence rate of various
response parameters with that of their respective sen-
sitivities, (2) the convergence rate of global and local
response parameters, (3) the convergence rate of glo-
bal and local response sensitivities. 
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2 “EXACT” FINITE ELEMENT RESPONSE 
SENSITIVITY ANALYSIS

After spatial discretization using the finite element
method, the equation of motion of a materially-non-
linear-only structural system is given by the follow-
ing nonlinear matrix differential equation: 

(1)

where t = time, θ = scalar sensitivity parameter
(material or loading variable), u(t) = vector of nodal
displacements, C = damping matrix, M = mass
matrix, R(u, t) = history dependent internal (inelas-
tic) resisting force vector, F(t) = dynamic load vec-
tor, and a superposed dot denotes one differentiation
with respect to time. The potential dependence of
each term of the equation of motion on the sensitivity
parameter θ is shown explicitly in Eq. (1). 

We assume that the equation of motion (1) is inte-
grated numerically in time using the well-known
Newmark-β method of structural dynamics (Chopra
2001), i.e., 

(2)

where we select ,  for the constant
average acceleration method. Substitution of Eqs. (2)
into equation of motion (1) expressed at discrete time
t = tn+1 = (n+1) Δt, in which Δt denotes the constant
time increment, yields the following nonlinear matrix
algebraic equation in the unknowns un+1 = u(tn+1):

(3)

where 

Equation (3) is solved using a Newton-Raphson iter-
ative procedure (Simo and Hughes 1998). Assuming
that  is the converged solution for the current
time step, and differentiating Eq. (3) with respect to θ
using the chain rule, recognizing that

 where � and � denote the stress
and strain tensors, respectively, we obtain:

(4)

where

The second term on the right-hand-side of Eq. (4)
represents the partial derivative of the internal resist-
ing force vector, R(un+1), with respect to sensitivity
parameter θ under the condition that the displace-
ment vector un+1 remains fixed. In displacement-
based finite element analysis, this conditional deriva-
tive term can be expressed as (Conte et al. 2002)

(5)

where  denotes the derivative of the

stress vector  with respect to θ for
fixed strain vector . 

Analytical expressions for this history dependent
conditional derivative of the stress vector have been
derived by Zhang and Der Kiureghian (1993) and
Conte and co-workers (1995a, 1998) for the constitu-
tive J2 (or Von Mises) plasticity model and by Conte
and co-workers (1995a, 1995b) for the constitutive
cap plasticity model in the case of a return map con-
stitutive integration algorithm (Simo and Hughes
1998). The above DDM for displacement-based
finite elements has been implemented in the general-
purpose finite element analysis program FEAP (Tay-
lor 1998). 
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3 CONVERGENCE STUDIES

This section presents results of convergence studies
performed on the DDM as applied to an inelastic test
structure. 

3.1 Application examples

The test structure considered in this study consists of
a five-story single-bay steel moment-resisting frame,
a finite element model of which is shown in Fig. 1.

This frame is subjected to (a) a nonlinear static push-
over analysis under an inverted triangular pattern of
horizontal loads applied at floor levels as shown in
Fig. 2, and (b) a nonlinear response history analysis
for earthquake base excitation. This frame is mod-
eled using a displacement-based simplified distrib-
uted plasticity 2-D beam-column element
implemented in FEAP (Taylor 1998). Unless men-
tioned otherwise, the frame is modeled using two and
three elements per beam/column in the static and
dynamic case, respectively (Fig. 2). The source of
material nonlinearity is the moment-curvature rela-

tion, which is modeled using the 1-D J2 plasticity
model with linear kinematic hardening and zero iso-
tropic hardening as shown in Fig. 3. The axial force -
axial strain relation is taken as linear elastic and
uncoupled from the flexural behavior. The effects of
shear deformations are neglected. All columns and
beams of the frame are  steel I-beams with
a yield moment . A 20 percent
post-yield to initial flexural stiffness ratio is
assumed. A material density of 4 times the mass den-
sity of steel, i.e., , is used to
account for typical additional masses (e.g., slabs,
cross-beams, floors, ceilings, ...). The frame has an
initial fundamental period of 0.52 sec. Young’s mod-
ulus of steel is taken as . The iso-
tropic and kinematic hardening moduli are 
and , respectively. The
cross-sectional properties of the beams/columns are

 and .
There are 5 Gauss-Lobato points per beam-column
element. For the static push-over, the lateral force P
applied at the roof level (Fig. 2) increases from 0 to
230.5 [kN]. In the dynamic case, no damping is
included in the model and the earthquake input is
taken as the balanced 1940 El Centro record (Fig. 4)
scaled by a factor 3. During both the static push-over
and the dynamic response, the frame yields signifi-
cantly. 

5 
@

 4
 m

8 m

All beams and columns
are taken as W21x50

� = 4 x �steel to account for all masses

T1 = 0.52 sec (initial fundamental period)

Point A

Node B

Point A

Figure 1. Finite Element model of test structure.
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Figure 2. Load cases: static push-over and
earthquake base excitation. 
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Figure 3. Section constitutive model (moment-
curvature). 
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The following five sensitivity parameters are consid-
ered in the response sensitivity studies presented
below: moment of inertia, I, of cross-section of
beams/columns, initial yield moment, My0, isotropic
and kinematic hardening moduli, Hiso and Hkin,
earthquake ground acceleration at time t = 4.22 sec
and t = 7.60 sec,  and

. 

3.2 Convergence of Finite Difference Calculations of 
Response Sensitivities towards DDM Results

Here we study the sensitivities of the horizontal dis-
placement response of Node B (Fig. 1) as the frame
is subjected to the monotonic static push-over and
the ground excitation separately. A set of different
relative sensitivity parameter increments, , is
used to study the convergence of response sensitivity
results obtained using forward finite difference anal-
ysis to those obtained using the DDM. Finite differ-
ence and DDM results expressed in normalized or
semi-normalized forms are compared in Figs. 5 and 6
for the static push-over analysis with sensitivity
parameters I and Hkin, and in Figs. 7 and 8 for the
dynamic case with sensitivity parameters I and

. It is observed that for each loading
case and for each sensitivity parameter , there is an
optimum value of  that makes the finite differ-
ence result closest to the DDM result. When the rela-
tive sensitivity parameter increment grows above this
optimum value, the finite difference results worsens
due to truncation error (i.e., effects of higher order
terms in Taylor series expansion of response parame-
ter). If we decrease the relative sensitivity parameter
increment below this optimum value, so as to reduce
the truncation error, we have an excessive condition
error. The latter is due to round-off errors in the com-
puter or occurs if the response is calculated by an
iterative process which is terminated early (as is the
case for the incremental-iterative Newton-Raphson
method). In some cases, there may not be any sensi-
tivity parameter increment  which yields an
acceptable error. This is the so-called “step-size
dilemma.” It is noteworthy that for a given structural
system, the optimum value of  depends on the
parameter  and the load case. For the response anal-
yses considered here, the optimum value and accept-
able range of the sensitivity parameters are
summarized in Table 1. Notice that in Table 1, 
is not normalized because the nominal value of 
is zero (i.e., no isotropic hardening). It is observed
that in the dynamic case, the optimum value of

 is at least one order of magnitude larger for
the discrete loading sensitivity parameter than for the
material sensitivity parameters.      
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3.3 Convergence of response and response 
sensitivities with respect to spatial discretization

This section examines the convergence of global and
local response parameters, as well as their sensitivi-
ties, with respect to the spatial discretization (i.e.,
number of finite elements per beam/column). Here, a
global response parameter is taken as the horizontal
displacement at node B (Fig. 1),  (i.e., roof dis-
placement), while the local response parameters are
chosen as the moment-curvature, , plastic cur-
vature, , and accumulated plastic curvature, , at
Gauss-Lobato point A at the bottom of the left col-
umn of the frame (Fig. 1). The spatial discretization
was varied from 1 to 8 finite elements per beam/col-
umn. Some computational results are shown in Figs.
9 to 12 for the static push-over case, and in Figs. 13
to 17 for the dynamic case. Furthermore, for each
response parameter and load case, the minimum
number of elements per beam/column required to
achieve convergence of response and response sensi-
tivities is reported in Table 2 for the global response
parameter  and in Table 3 for local response
parameters ,  and .          
From the results obtained, we observe that: 
(1) Global response parameters converge with fewer

finite elements per beam/column than local
response parameters (compare results in Tables 2
and 3). 

(2) A given response parameter, global or local, con-
verges with fewer elements per beam/column
than its sensitivities. This is due to the fact that
the response sensitivities are less smooth than the
responses themselves; in fact, the response sensi-
tivities are only piecewise continuous, with dis-
continuities due to material state transitions
between elastic and plastic states at Gauss points
(Conte et al. 2002). 

(3) Sensitivities of global response parameters con-
verge with slightly fewer elements per beam/col-
umn than sensitivities of local response
parameters in the static push-over case. However,
this is not always true in the dynamic case. 

    
3.4 Convergence of response and response 

sensitivities with respect to temporal 
discretization

In this section, we investigate for the dynamic case
the convergence of global and local response param-
eters, as well as their sensitivities, with respect to the
time step size. The frame structure is discretized into

Table 1: Optimum values and acceptable ranges for 
. 
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Table 2: Minimum number of elements per beam/
column required for convergence of global response 
and its sensitivities. 
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4 5 4 4 3
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3 elements per beam/column. The time step size is
varied from 0.02 sec to 0.0005 sec. Some computa-
tional results are shown in Figs. 18 to 22. Further-
more, for each response parameter and load case, the
maximum time step size required to achieve conver-
gence of response and response sensitivities is
reported in Table 4 for the global response parameter
U and in Table 5 for the local response parameters.

Based on the single application example and the
small set of response parameters considered in this
study, it is observed that: 
(1) The global response parameter converges at a
time step size larger than or equal to that required for
convergence of local response parameters.
(2) Both global and local response parameters con-
verge at a time step size larger than or equal to that
required for convergence of the corresponding sensi-
tivities. 
(3) Sensitivities of global and local response param-
eters tend to converge at the same time step size.
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Figure 19. Convergence of roof displacement
sensitivity to I  with respect to time step size.

Table 4: Maximum time step size required for 
convergence of global response and its sensitivities.
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Figure 20. Convergence of roof displacement
sensitivity to My0 with respect to time step size.
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Figure 21. Convergence of plastic curvature
sensitivity to I with respect to time step size.
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Figure 22. Convergence of accumulated plastic cur-
vature sensitivity to I with respect to time step size.
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4 CONCLUSIONS

The Direct Differentiation Method (DDM) allows to
compute the “exact” sensitivities of the numerical
nonlinear finite element response prediction of a
structural system to material and loading parameters.
Three types of convergence studies related to the
DDM were performed, namely (1) convergence of
the sensitivity results obtained using the forward
finite difference method towards those obtained
using the DDM, with decreasing relative size of the
sensitivity parameter increment, ; (2) conver-
gence of response and response sensitivities with
respect to spatial discretization (i.e., finite element
mesh size); and (3) convergence of response and
response sensitivities with respect to temporal dis-
cretization (i.e., time step size). These sensitivity
studies were conducted based on a test structure con-
sisting of a steel moment-resisting frame subjected to
monotonic push-over and earthquake base excitation.
The frame is modeled using a simple 2-D displace-
ment-based, plasticity-based (1-D J2 plasticity)
frame element. Based on the results obtained for this
inelastic test structure, it was found that:
(1) For each loading case and each sensitivity

parameter , there is an optimum value of 
for which the finite difference results are closest
to the DDM results. Above or below this opti-
mum value, the finite difference results are wors-
ened by truncation error or condition error,
respectively. 

(2) A given response parameter, global or local, con-
verges with fewer elements per beam/column
than its sensitivities.

(3) Global and local response parameters converge
at a time step size larger than or equal to that
required for convergence of the corresponding
sensitivities.

This study shows that the spatial and temporal (to a
lower degree) discretization requirements for accu-
rate computation of the structural response are differ-
ent from those for accurate computation of the

response sensitivities to material and loading param-
eters. In the application example considered, the spa-
tial discretization requirements for accurate
computation of the response sensitivities also depend
on the sensitivity variable. 
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